
Text Repository

Mar 16, 2022

Contents

1 Features 3

2 Installation 5

3 Documentation 7
3.1 Basic Usage . 7
3.2 Domain model . 8
3.3 Components . 10
3.4 Text Repository API . 11
3.5 Indexing . 11
3.6 Dashboard . 13
3.7 Production Setup Example . 14
3.8 Backing Up Elasticsearch Example . 16
3.9 Content Coordinate System . 17
3.10 FAQ . 18

4 Support 19

5 Contribute 21

6 License 23

i

ii

Text Repository

Backend repository to store and index corpora with metadata and versions.

Contents 1

Text Repository

2 Contents

CHAPTER 1

Features

• Store texts of a corpus in a uniform domain model:

– Keep track of file versions

– Link all file types to the same source document

– Store metadata about documents, files and versions

• Use Rest API to create, read, update and delete texts

• Search files using stock and custom elasticsearch indices

• Explore API with concordion and swagger

Fig. 1: Schematic overview of the Text Repository: a) search in corpus; b+c) manage file types, versions and metadata
of corpus; d+e) build custom indices that are automatically kept in sync with corpus; f+g) store all data in a unified
database model.

3

domain-model.html
https://www.elastic.co/elasticsearch/
https://concordion.org/
https://swagger.io/

Text Repository

4 Chapter 1. Features

CHAPTER 2

Installation

Prerequisites: docker-compose.

To run the Text Repository locally, run in a new directory:

git clone https://github.com/knaw-huc/textrepo .
cd examples/production
curl -o scripts/wait-for-it.sh https://raw.githubusercontent.com/vishnubob/wait-for-
→˓it/master/wait-for-it.sh
chmod +x scripts/wait-for-it.sh
./start-prod.sh

Read more on basic usage

5

usage.html

Text Repository

6 Chapter 2. Installation

CHAPTER 3

Documentation

3.1 Basic Usage

3.1.1 Run locally

Production setup

To start the Text Repository without building any containers, start it as described in the production example. This
docker-compose setup does not build images but downloads the images from docker hub.

Development setup

When you want to start developing or debugging, you can use the ‘dev’ setup, as found in examples/
development. When starting, docker-compose will build all Text Repository images from scratch. When stopping,
all containers, volumes and network are removed.

See examples/development/README.md for installation details.

3.1.2 Explore locally

After running the docker-compose setup, you can:

• Find basic use cases in the integration test results

• Add some test data: ./scripts/populate.sh

• Explore REST-API of Text Repository using swaggger

• Search in full-text and autocomplete indices

7

https://github.com/knaw-huc/textrepo/tree/master/examples/production
http://localhost:8080/concordion/nl/knaw/huc/textrepo/Textrepo.html
http://localhost:8080/textrepo/swagger
http://localhost:8080/index/full-text
http://localhost:8080/index/autocomplete

Text Repository

3.1.3 FAQ

Elasticsearch

If you run into this Elasticsearch warning:

max virtual memory areas vm.max_map_count [65530] is too low, increase to at least
→˓[262144]

you may have to:

sysctl -w vm.max_map_count=262144

(Source: https://github.com/docker-library/elasticsearch/issues/111)

If you run into this Elasticsearch error:

max file descriptors [4096] for elasticsearch process is too low, increase to at
→˓least [65535]

you may have to increase the ulimits.nofile of elasticsearch in your docker-compose.yml:

services:
elasticsearch:
ulimits:

nofile:
soft: 65535
hard: 262144

(Source: https://stackoverflow.com/a/58024178)

3.2 Domain model

The Text Repository was born out of the desire to archive and unlock text corpora and their various files and formats
in a durable and consistent way.

To represent text corpora in a generic way, the Text Repository is build around the following core concepts:

• document: top level object which represents the core physical entity of a digitized corpus (e.g. a page) that
resulted in scans, xml-files, text files and other file types. A document contains a list of files, unique by file type

• file: as found on your computer, including a file type but without its contents. A file contains a list of versions

• version: version of a file. A version contains the bytes of a file and a timestamp. A file can have a number of
different versions

• metadata: documents, files and versions can contain metadata in the form of list of key-value pairs

3.2.1 File types

The Text Repository is built to contain ‘human readable’ file types that can be processed by elasticsearch, like plain
text, json, and xml.

8 Chapter 3. Documentation

https://github.com/docker-library/elasticsearch/issues/111
https://stackoverflow.com/a/58024178

Text Repository

Fig. 1: Graphical representation of the Text Repository domain model

3.2. Domain model 9

Text Repository

3.2.2 Work in progress

Note that this project is work in progress. The Text Repository model of a text corpus will improve and expand as the
project progresses.

3.3 Components

3.3.1 Endpoints

• Text Repository API

• Text Repository healtch checks

• Integration test results

• Elasticsearch indices

• Stub indexer

3.3.2 Services

The Text Repository application is bundled with a couple of services:

• Text Repository, core application

• Postgres as database

• Elasticsearch as search engine

• Docker and docker-compose for running and connecting services

• Nginx as a reverse proxy

Text Repository

The Text Repository is a java application build with dropwizard. It contains a REST-API to create, retrieve, update
and delete documents, files, versions and metadata. It uses the postgres database to store its domain model. It keeps
the elastic search indices in sync with the postgres database.

Postgres

Postgres is used as a ‘vault’ which contains all the data or ‘the golden standard’, from which all indices are generated.

Postgres data can be modified using the Text Repository REST-API.

Elasticsearch

See the indexing page.

Nginx

As a reverse proxy it exposes the relevant parts of all the service endpoints. See exposed endpoints below.

10 Chapter 3. Documentation

http://localhost:8080/textrepo/swagger
http://localhost:8081/healthcheck
https://demorepo.tt.di.huc.knaw.nl/concordion/nl/knaw/huc/textrepo/Textrepo.html
http://localhost:8080/index/_aliases?pretty
http://localhost:8080/custom-index/
https://www.postgresql.org/
https://www.elastic.co/elasticsearch/
https://www.docker.com/
https://docs.docker.com/compose/
https://www.nginx.com/
https://www.dropwizard.io/en/latest/
indexing.html

Text Repository

3.4 Text Repository API

The Text Repository has a REST-full api to retrieve, create, update and delete resources as depicted in its domain
model. For certain complex activities a task-endpoint has been created.

To explore the API, start up the Text Repository locally, and checkout swagger or the integration Endpoints.

3.4.1 Tasks

The REST API can be a bit laborious for certain activities. For example, to retrieve the latest contents of a document
by its external document ID and file type, a user would have to perform a requests for each of the following steps:

• find a document ID by its external ID;

• find a file ID by its parent document ID and file type;

• find the latest version of a file by its parent file ID;

• get the contents of the latest version by its parent version ID or its hash.

To simplify such a workflow, the Text Repository offers task-endpoints to perform a complex task within a single
request. The advantage is simplicity and ease of use. However do not expect these tasks to be ‘REST-compliant’. Eg,
the list of requests above can be replaced with a single request to: /task/find/{externalId}/document/
metadata.

3.5 Indexing

The Text Repository creates and updates ElasticSearch (ES) indices as defined in docker-compose.env.

Elasticsearch documents are automatically created and updated when new file versions are added to the Text Reposi-
tory.

More on: searching in ES.

3.5.1 Indexer

To convert new file versions into a format that ES understands, the Text Repository uses ‘indexer’ services. An indexer
is a service with three endpoints:

• GET mapping returns json mapping used by the Text Repository to create an ES index.

• POST fields converts the contents of new file version into a json document that matches the json mapping

• GET types returns mimetypes that the indexer accepts, including the ‘subtypes’ of a mimetype, which will
handled in the same way as their parent mimetype.

– See JSON schema below.

– For example: application/xml could have as a subtype application/vnd.prima.
page+xml, meaning that the indexer handles pagexml just like ordinary xml.

– An indexer that returns no types (status 204 No Content) is assumed to handle all file types

More on: ES mappings.

JSON Schema of types endpoint:

3.4. Text Repository API 11

domain-model.html
domain-model.html
https://www.elastic.co/guide/en/elastic-stack/current/index.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/mapping.html

Text Repository

{
"$schema": "http://json-schema.org/draft-04/schema#",
"type": "array",
"items": [
{

"type": "object",
"properties": {

"mimetype": {"type": "string"},
"subtypes": {"type": "array", "items": [{"type": "string"}]}

},
"required": ["mimetype", "subtypes"]

}
]

}

3.5.2 Indexing moments

When are changes made to the ES indices?

• POST /rest/files -> Creating a new file resource will create ES docs with empty body

• PUT /rest/files -> Updating a file resource will update ES docs with latest version contents or an empty
body when no latest version contents available

• DELETE /rest/files -> Deleting a file will delete the corresponding ES docs

• POST /rest/versions -> Updating a version resource will update ES docs with latest version contents

• DELETE /rest/versions -> Deleting the latest version of a file will update ES docs with the pre-latest
version contents

Which tasks change indices?

• POST /task/index -> Multiple endpoints for reindexing a subset of files

• POST /task/import/documents/{externalId}/{typeName} -> index the imported file (op-
tional, default)

• DELETE /task/delete/documents/{externalId} -> delete files of document (optional, default)

• DELETE /task/index/deleted-files -> new, delete all ES-docs of deletes files, meaning: delete all
ES doc IDs not present in Text Repository database

Note: when calling any other endpoints (e.g. mutating metadata or external IDs), reindexing should done by calling
one of the indexing tasks.

3.5.3 Indexing workflow

When a new file or file version is added, the Text Repository has to determine which ES document in which index
needs to be created or updated. The current workflow consists of the following steps:

• Retrieve file type of new file version

• For each indexer: does it handle this file mimetype?

– No? Skip

– Yes? Continue

• Convert file version contents to ES document using appropriate indexer fields endpoint.

12 Chapter 3. Documentation

Text Repository

• Is this file version the first version?

– Yes: create new ES document

– No: update ES document by file ID

• Use response of fields-endpoint to create or update ES documents

3.5.4 Fields endpoint

The fields-endpoint of an indexer converts a file into an ES document. The Text Repository can call this endpoint in
two ways: as multipart or original.

• When using multipart, files will be send to the fields endpoint using Content-Type: multipart/
form-data with a body part named file which contains the file contents and and a Content-Type header
with the file mimetype.

• When using original, files will be send to the fields endpoint with a Content-Type header and a body
containing the file contents.

3.5.5 Indexer configuration

Indexers and their ES indices can be configured with $TR_INDEXERS in docker-compose.env. An (empty)
indexer configuration consists of the following elements:

indexers:
- name: # string, name of indexer

mapping: # string, url of GET mapping endpoint
fields:
url: # string, url of POST fields endpoint
type: # string, 'multipart' or 'original'

mimetypes:
- # list of strings, supported mimetypes

elasticsearch:
index: # string, name of index
hosts:

- # list of strings, host urls

3.5.6 Default indexers

The textrepo contains a number of default indexers:

• Full-text indexer: for basic full-text search queries

• Autocomplete indexer: for autocomplete suggestions

• File indexer: for searching the metadata of documents, files and versions

3.6 Dashboard

The Text Repository offers a, currently minimal, dashboard API which can be used to get some ‘high level’ overview
statistics. We welcome ideas and use cases to improve and expand the dashboard API. You can try out the dashboard
using swagger.

3.6. Dashboard 13

https://github.com/knaw-huc/textrepo/tree/master/elasticsearch/full-text
https://github.com/knaw-huc/textrepo/tree/master/elasticsearch/autocomplete
https://github.com/knaw-huc/textrepo/tree/master/elasticsearch/file
index.html#support
http://localhost:8080/textrepo/swagger#/dashboard

Text Repository

3.6.1 Get document counts

At /dashboard, Text Repository gives counts of:

• how many documents are registered;

• how many documents have at least a single file;

• how many documents have at least one item of metadata;

• how many documents have both a file and metadata;

• how many documents have neither a file, nor any metadata.

The latter, in particular, is interesting when it is non-zero. These are documents that have been registered with Text
Repository with their external identifier, but are otherwise content-free. This is probably not what you want.

3.6.2 Find orphaned documents

If /dashboard indicates there are some documents with no content associated with them (“orphans”), you can find
out which these are at /dashboard/orphans.

3.6.3 Get metadata counts

At /dashboard/metadata you can find out how many documents have / share a given metadata key. It returns
documents broken down by metadata key.

3.6.4 Get metadata value counts

At /dashboard/metadata/{key} you can find, for a specific metadata key, documents counts grouped by
metadata value for that key.

3.7 Production Setup Example

In production we want to:

• backup and restore production data

• run integration tests without touching production data

See: ./example/production/.

3.7.1 Backing Up Data

We can backup Postgres by archiving its data directory.

Elasticsearch is a bit more complicated: we cannot simply copy the data from its data dir. It would result in corrupt
indices and missing data. Instead we will be using the ‘snapshot’ api of ES to create and restore backups.

See also: backing up elasticsearch, an example.

Example of backing up and restoring production data:

14 Chapter 3. Documentation

example-backup-es.html

Text Repository

cd ./examples/production

start production:
./start-prod.sh

show logging:
./log.sh prod

add some docs, files and versions:
(cd ../../ && ./scripts/populate.sh)

check added documents exist:
curl localhost:8080/textrepo/rest/documents
curl localhost:8080/index/full-text/_search

we might want to backup our data?
mkdir ~/backup
./stop-prod.sh
./backup-prod.sh
ls ~/backup/

disaster strikes!
source docker-compose.env
docker-compose -f docker-compose-prod.yml down -v

nothing left!
./start-prod.sh && ./log.sh prod
curl localhost:8080/textrepo/rest/documents
curl localhost:8080/index/full-text/_search

restore volumes:
docker-compose -f docker-compose-prod.yml down -v
./restore-prod.sh

check docs have been restored:
./start-prod.sh && ./log.sh prod
curl localhost:8080/textrepo/rest/documents
curl localhost:8080/index/full-text/_search

See: ./backup-prod.sh and ./restore-prod.sh in ./examples/production/.

3.7.2 Running Integration Tests

In production we want to show the integration test results from the concordiondata volume, but we do not want
concordion to wipe out our production data while running its tests. This can be achieved by creating separate postgres
and elasticsearch volumes for the production and integration environment. However, we only have one concordion
data volume, in order to share the concordion test results of the integration setup with the production setup.

Example of running integration tests on production server (i.e. after upgrading) without interfering with production
data:

cd ./examples/production

for starting and populating production, see example above.

stop production:

(continues on next page)

3.7. Production Setup Example 15

Text Repository

(continued from previous page)

./stop-prod.sh

run integration tests with different volumes:
./start-integration.sh && ./log.sh integration

check that no documents exist (because populate.sh was not run):
curl localhost:8080/textrepo/rest/documents

when tests have run, stop integration test setup:
./stop-integration.sh

start production again...
./start-prod.sh && ./log.sh prod

check that documents created by ./scripts/populate.sh still exist:
curl localhost:8080/textrepo/rest/documents
curl localhost:8080/index/full-text/_search

check concordion results from integration setup are available through nginx:
open http://localhost:8080

See: docker-compose-integration.yml and docker-compose-prod.yml in ./examples/
production/.

When rerunning an example, make sure all previous data is gone:

cd ./examples/production

source docker-compose.env
docker-compose -f docker-compose-prod.yml down -v
docker-compose -f docker-compose-integration.yml down -v

3.8 Backing Up Elasticsearch Example

We cannot simply copy the data from es data dirs, because it could result in corrupt indices and missing data. Instead
we will be using the ‘snapshot’ api of ES to create and restore backups (i.e. snapshots).

More on: elasticsearch snapshot api.

3.8.1 Testing ES Snapshot

See also the production example, backup-prod.sh and restore-prod.sh.

ES_URL=$(docker port tr_elasticsearch 9200)

register a snapshot repository
curl -XPUT $ES_URL/_snapshot/backup \

-H 'content-type:application/json' \
-d '{"type":"fs","settings":{"location":"/backup"}}'

create a snapshot:
curl -XPUT "$ES_URL/_snapshot/backup/snapshot_1?wait_for_completion=true" | jq

(continues on next page)

16 Chapter 3. Documentation

https://www.elastic.co/guide/en/elasticsearch/reference/7.6/snapshot-restore.html
example-production.html

Text Repository

(continued from previous page)

when starting with fresh es install, first restore snapshot repository:
curl -XPUT $ES_URL/_snapshot/backup \

-H 'content-type:application/json' \
-d '{"type":"fs","settings":{"location":"/backup"}}'

and restore snapshot:
curl -XPOST "$ES_URL/_snapshot/backup/snapshot_1/_restore" \

-H 'content-type:application/json' \
-d '{}'

3.9 Content Coordinate System

Caveat lector: HC SVNT DRACONES

3.9.1 Addressing Content

Suppose a document (e.g., a txt file) is in the Text Repository, how can we then refer to portions of the text inside
the document?

Let’s try some URIs.

Suppose that:

curl $prefix/documents/$id

will get you all of the document’s txt contents. It would be nice if we could address a character range, e.g., from
characters 10-15 in a manner such as:

curl $prefix/documents/$id/text/chars?start=10&end=15

or:

curl $prefix/documents/$id/text/chars?start=10&length=6

Similarly we could be interested in lines 2..4 at address:

curl $prefix/documents/$id/text/lines?start=2&end=4

The idea being that the text part in $prefix/documents/$id/text/chars?start=10&length=6 sig-
nifies that we are interested in interpreting the document from a txt perspective, looking at lines, words, characters,
etc. (as opposed to, e.g., an XML / TEI context where we could be interested in getting the author from the metadata,
. . .)

Things get interesting once we challenge ourselves to the idea that we could be interested in viewing a document from
this text perspective, irrespective of the actual format that was used to upload the document. So, even if a TEI (or
PageXML, hOCR, . . .) document is uploaded, we still want to address its textual content via /text/chars/...
and we consider it a Text Repository responsibility to be able to (in this case) yield the requested character range
(lines, words, . . .) from the TEI document.

3.9.2 Perspectives

In $prefix/documents/$id/text/{chars,lines,words,...} we will call text the perspective.

3.9. Content Coordinate System 17

https://en.wikipedia.org/wiki/Here_be_dragons

Text Repository

TODO: conjure up terminology for the {chars,lines,words} part, perhaps selector?

$prefix/documents/$id/<perspective>/<selector>?params

Sidestepping to current Text Repository implementation, perspective could be a Resource class in the WebApp
stack, translating the URI / addressing scheme. Then a separate Perspective class hierarchy is responsible for mapping
various file formats to text (flatten the tree and yield the characters for a generic XML file, do something more intelli-
gent for a TEI file, use “Rutger’s” implementation for PageXML/hOCR, etc.). Then a Selector class hierarchy works
in the txt domain and selects the requested fragment.

TODO: diagrams :-)

3.10 FAQ

3.10.1 Elasticsearch

If you run into this Elasticsearch warning:

max virtual memory areas vm.max_map_count [65530] is too low, increase to at least
→˓[262144]

you may have to:

sysctl -w vm.max_map_count=262144

(Source: https://github.com/docker-library/elasticsearch/issues/111)

If you run into this Elasticsearch error:

max file descriptors [4096] for elasticsearch process is too low, increase to at
→˓least [65535]

you may have to increase the ulimits.nofile of elasticsearch in your docker-compose.yml:

services:
elasticsearch:
ulimits:

nofile:
soft: 65535
hard: 262144

(Source: https://stackoverflow.com/a/58024178)

18 Chapter 3. Documentation

https://github.com/docker-library/elasticsearch/issues/111
https://stackoverflow.com/a/58024178

CHAPTER 4

Support

If you are having issues, please let us know at:

https://github.com/knaw-huc/textrepo/issues

19

https://github.com/knaw-huc/textrepo/issues

Text Repository

20 Chapter 4. Support

CHAPTER 5

Contribute

Want to improve the Text Repository? Submit a pull request at:

https://github.com/knaw-huc/textrepo

21

https://github.com/knaw-huc/textrepo

Text Repository

22 Chapter 5. Contribute

CHAPTER 6

License

Copyright 2019-2021 Koninklijke Nederlandse Akademie van Wetenschappen

Licensed under the Apache License, Version 2.0 (the “License”); you may not use this file except in compliance with
the License. You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an
“AS IS” BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
License for the specific language governing permissions and limitations under the License.

23

http://www.apache.org/licenses/LICENSE-2.0

	Features
	Installation
	Documentation
	Basic Usage
	Domain model
	Components
	Text Repository API
	Indexing
	Dashboard
	Production Setup Example
	Backing Up Elasticsearch Example
	Content Coordinate System
	FAQ

	Support
	Contribute
	License

